Ventral Hernia Repair: Revisonal Surgery

Natan Zundel MD FACS
Professor of Surgery
Vice-Chairman Department of
Surgery
FIU Herbert Wertheim College of
Medicine. Miami Florida

DISCLOSURE

- Ethicon Endosurgery
- Olympus
- Covidien
- APOLO
- GI Dynamics

Incidence

- 2 Million laparotomies per year in U.S.
- 2%-11% result in incisional hernias
- 90,000 hernia repairs per year
- Most common first 5 years

Incidence

- Recurrence after initial repair 15-40 %
- Recurrence after second repair can exceed
 50% with traditional technique

*Mudge M et al, Br. J. Surg, 1985, 72:70-71

Risk Factors

- Wound Infection
- Abdominal distension
- Age Gender
- Obesity
- Emergency laparotomies
- Early re-exploration
- Immunosuppression
- Technique

Surgical Options

- Primary Closure defect >4cm (failure 31-54%)*
- Primary closure with relaxing incisions
- Primary closure with onlay Mesh
- Onlay mesh only
- Retrorectus mesh (Stoppa)
- Inlay mesh (Open Laparoscopic)
- Sandwich technique

* Hesselink VJ. Surg Gynecol Obstet 1993;176(3):228-34

Progress - Repair with mesh

- Decreased recurrence rate 10%
- Increased complication rate:
 - Wound Infection
 - Adhesion formation
 - Entercutaneous Fistula

Mudge M et al, Br. J. Surg, 1985, 72:70-71

The Next Step: Laparoscopic Repair

- Described by LeBlanc and Booth in 1993
- Allows for decreased recurrence rate of mesh repair
- Decreased Wound complication rate

LeBlanc KA et al, Surg Laparosc Endosc 1993,3:39-41

Laparoscopic Repair

- Hospital stay
- Postoperative pain
- **V** Recurrence (4% vs 16.5%)*
- Infection: Wound (1.1%); Mesh(0.6%)

Study	Year	# Patients		Morbidity		Mesh infection		Wound infection		Recurrence	
		Lap	Open	Lap	Open	Lap	Open	Lap	Open	Lap.	Oper
McGreevy	2003	65	71	5	15	2	0	0	7	_	_
Raftopoulos	2003	50	22	14	10	1	0	1	1	1	4
Wright	2002	90	90	15	31	1	1	1	8	1	5
Robbins	2001	18	31	-	-	1	4	1	0	-	_
DeMaria	2000	21	18	13	13	1	2	1	4	1	0
Chari	2000	14	14	2	2	0	1	_	_	-	_
Carbajo	1999	30	30	20	6	0	3	0	5	1	2
Ramshaw	1999	79	174	15	46	1	5	6	2	2	36
Park	1998	56	49	10	18	2	1	0	2	6	17
Holzman	1997	21	16	5	5	0	1	1	0	2	2
Percent				23.2	30.2	2.0	3.5	2.6	5.8	4.0	16.5

•Novitsky Y, Heniford T. Laparoscopic ventral hernia repair. OTGS 2006;8(1):4-9

Patient Selection

- Poor candidates for open or laparoscopic repair:
 - End Stage Cardiac Disease
 - End Stage Pulmonary Disease
 - **End Stage Liver Disease**
- Questionable for laparoscopic approach:
 - End stage renal disease treated with peritoneal dialysis
 - May have a fibrinous peel that obliterates the abdominal free space

Heniford et al, Ann Surg 2003, 238:391-400

Patient Selection

- Hernia Size:
 - Lower limit : 2 cm transverse diameter
 - Upper limit : <15 cm</p>
 - Recommend an overlap of 3-4 cm of mesh around hernias
 - Larger hernias difficult technically:
 - Loss of abdominal domain
 - Trocar placement
 - Accurate mesh placement

Heniford et al, Ann Surg 2003, 238:391-400

Ventral Hernias	ecurrence ai	fter Lap	aroscopi	ic Repair
<u>Author</u>	n	Recurre	ence (%)	Mean Follow up
Koehler Rosen Constanza Heniford Carbajo	(1999) (2003) 100 a (1998) 16 (2000) 819 (2000) 100	34	9 17 6 4.7 2	20m 30m 18m* 20m 30m
	f recurrent ve			os, 17:123-128

Ventral Hernias

DiagnosisAdditional tools

In Painful or Obese Abdominal wall

- Ultrasound
- CT Scan
- MRI

Truong SN et al, Chapter 8, in Hernia R Fitzgibbons and A Greenburg

Ventral Hernias

Diagnosis

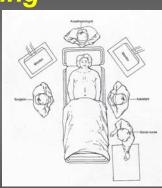
Differential Diagnosis of Hernia with:

- Lymphnode
- Hemathoma
- Metastasis
- Seroma
- Recurrence

Truong SN et al, Chapter 8, in Hernia R Fitzgibbons and A Greenburg

Type of Meshes

- Monofilament polypropylene (Marlex)
- Double-filament polypropylene (Prolene)
- Expanded polytetrafluoroethylene (PTFE)
- Tissue separating:
 - Polyester

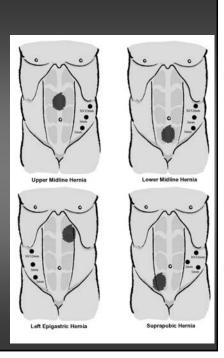

Non adhesive interface

- Polypropylene
- Vicryl
- Dexon
- Xenografts (Surgisis, Permacol Absorbable)
- Homografts (Alloderm)

Laparoscopic Repair Positioning

- No Bowel prep
- Preoperative antibiotics
- Arms tucked
- Foley cath/OGT-NGT
- Longitudinal Log Roll
- Wide prep

Gersin KS Laparoscopic incisional hernia repair. OTGS 2004; 6(3): 189-99

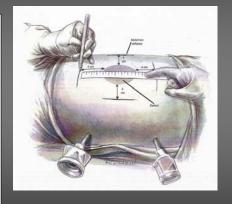


Laparoscopic Repair Trocar placement

- Hasson technique
- Tip of 11th rib
- Transverse umbilical line
- Away from hernia defect
- Opposite to previous surgery site

Operative Technique

- Access abdomen using Hassan technique or direct visual access trocar
- Enter in area away from previous incisions
- Adhesiolysis performed and the hernia is reduced
- Hernia defect is measured and a piece of mesh chosen with 3 cm overlap



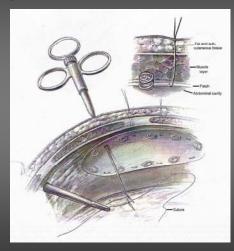
Laparoscopic Repair Lysis of adhesions

- Avoid energy sources
- Traction countertraction
- Wide LOA (Falciform, bladder)
- ENTEROTOMY!!!!

Laparoscopic Repair Measuring Defect

- Intraperitoneally
- Extra-abdominally
- 4-5 cm overlap
- Multiple defects counted as one

Gersin KS Laparoscopic incisional hernia repair. OTGS 2004; 6(3): 189-99


Laparoscopic Repair Mesh Preparation

- Correct orientation and marking
- Cardinal nonabsorbable sutures
- Rolling and insertion

Laparoscopic Repair Parachuting of Mesh

- Start from longer axis at "limited space borders"
- Complete side away from camera
- Tack circonferentially (1-2 cm interval)*
- Additional transfascial sutures (4-6 cm interval)*

* Heniford BT. Ann Surg 2003;238(3):391-9

CAUSES of RECURRENCE

Evolution of technique Inexperience (learning curve) Incomplete dissection

Missed hernia

Missed lipoma (herniated preperitoneal fat) of cord or of direct hernia

Inadequate reduction of direct hernia sac

Inadequate dissection of proximal indirect sac from cord Rolling of mesh

Mesh size and configuration

Too small

Inadequate overlap of defect

Migration

Configuration (slit or keyhole)

Mesh fixation

Mesh poorly fixed laterally

Mesh poorly fixed medially

Clips pulled through

Mesh never stapled

Issue of mesh fixation versus nonfixation

Mesh displacement

Hematoma

Seroma

Migration

Rolling of mesh

Shrinkage

Davis C.I. Arregui ME, Surg Clin N Am 2003: 83: 1141-61

INTRAOPERATIVE COMPLICATIONS

Related to laparoscopic technique

Trocar injury to bowel, bladder

Trocar site hemorrhage

Abdominal wall hematoma

Hypercapnia

Subcutaneous emphysema

Pneumomediastinum

Pneumothorax

Related to laparoscopic hernia repair

Vascular injury

Femoral vessels

Epigastric vessels

Gonadal vessels

Nerve entrapment (stapling, tacking)

Transection of vas deferens

Transection of nerve(s)

Davis CJ, Arregui ME, Surg Clin N Am 2003: 83: 1141-61

Related to the patient Urinary retention Others (MI, PE, DVT, etc.) **POSTOPERATIVE** COMPLICATIONS Related to the hernia repair Seroma Hematoma Hydrocele Neuralgias Nerve entrapment (staple) Nerve injury Ilioinguinal Lateral cutaneous nerve Groin pain Early (transient) Late (chronic) Testicular problems Pain Swelling Orchitis Trocar site hernia with secondary: Small bowel obstruction Incarcerated omentum Small-bowel obstruction from peritoneal hole Wound infection

Mesh complications Infection Late rejection

Synthetic	Biologic
Advantages Strength Clinical experience Cost	Advantages Support angiogenesis Native tissue repair Resistance to infection
Disadvantages Chronic inflammation Chronic pain Chronic infection No vascular ingrowth	Disadvantages Lack of remodeling Initial ↓ burst strength Cost Failure in infected fields? Disease transmission?

Costs

<u>Synthetic</u>

Prolene ¢ 15/cm²

Light Weight Polypropelene \$30/cm²

Tissue Separating \$ 2.5/cm²

Biologic

Bovine Pericardium

\$ 19/cm²

Human Dermis \$ 29-31/cm²

Biologic mesh

Current Applications in Hernias

- Contraindication to synthetic mesh use (Infected or contaminated field)
- Damage control abdomen
- Hiatal hernias
- Incarcerated strangulated hernias
- Prophylaxis for high risk patients (ostomy, obese)
- Uncomplicated inguinal hernias
- Uncomplicated ventral hernias

Biologic mesh vs. synthetic Data

- No randomized trials for ventral hernias
- One randomized trial for inguinal hernias
 - Ridgway DM. Br J Surg 2005; 92: 21 Similar results, but Less pain
- One randomized trial for hiatal hernias
 - Oelschager BK. Ann of Surg 2006

How to choose a mesh

- Technique:
 - Intraperitoneal?
- Contamination
 - Yes = Biologic vs Light weight (?)
- Type of Hernia
 - Large defect vs "Swiss cheese"

Does technique affect outcomes?

Ponsky J. J.Am Coll Surg. 2007 Nov-205(5):654-60.

- Alloderm:
 - Bridged group (n=11): 80% recurrence
 - Reinforced group (n=26): 20% recurrences
- Conclusions:
 - AlloDerm should be used only as a reinforcement after primary fascial re-appoximation

Conclusions

Biologic Meshes

- Definite role in:
 - Complex ventral hernias
 - Hiatal hernias
 - Contaminated field
- Probable role in:
 - Infected field
 - Uncomplicated inguinal hernias
- Unknown role in:
 - Uncomplicated ventral hernias

Mechanisms of recurrence

- Missed hernia defect
- Mesh contraction/migration
- Fixation failure/ inadequate fixation
- Mesh too small/ inadequate coverage (inadequate overlap)
- Mesh failure
- Tissue failure

Avoiding recurrence

- Clear visualization
- Wide coverage
- Secure fixation
- Mesh
- Future
 - Biomaterials
 - Biological mesh
 - Grown factor
 - Biodegradable Polymer Network + Grown factor

