

Timing for Surgery in Acute Cholecystitis

Horacio J Asbun MD FACS Professor of Surgery Mayo Clinic

Nothing to disclose

AAST 2012 PLENARY PAPER

No need to wait: An analysis of the timing of cholecystectomy during admission for acute cholecystitis using the American College of Surgeons National Surgical Quality Improvement Program database

Kelli R. Brooks, MD, John E. Scarborough, MD, Steven N. Vaslef, MD, PhD, and Mark L. Shapiro, MD, Durham, North Carolina

- NSQIP study
- 5,268 patients 5 year period
- All patients admitted with dx of ACC

TABLE 2. Preoperative Characteristics of Patients Undergoing Emergency Cholecystectomy for Acute Cholecystitis, Stratified by Preoperative Length of Hospitalization

	Preoperative Length of Stay Before Cholecystectomy					
Outcome Variable	0 d (n = 2,620)	1 d (n = 1,757)	2 d (n = 498)	3 d (n = 204)	≥4 d (n = 189)	P
Age, mean (SD), y	49.5 (17.7)	52.2 (18.2)	56.4 (19.0)	59.5 (18.0)	61.9 (18.4)	<0.000
Female	1,578 (60.2)	1,001 (57.0)	277 (55.6)	103 (50.5)	101 (53.4)	0.009
Body mass index, mean (SD), kg/m ²	30.5 (7.7)	30.5 (7.4	30.2 (7.2)	30.4 (7.0)	29.3 (8.4)	0.28
Nonindependent functional status	128 (4.9)	120 (6.8)	63 (12.7)	32 (15.7)	45 (23.8)	<0.000
Chronic medical condition	1,370 (52.3)	1,044 (59.4)	346 (69.5)	145 (71.1)	140 (74.1)	<0.000
Terminal medical condition	39 (1.5)	39 (2.2)	24 (4.8)	9 (4.4)	19 (10.1)	<0.000
Acute medical condition	110 (4.2)	144 (8.2)	50 (10.0)	37 (18.1)	55 (29.1)	<0.000
Preoperative sepsis classification						
None	1,881 (72.3)	1,111 (63.5)	308 (62.4)	138 (68.0)	129 (69.0)	<0.000
SIRS	617 (23.7)	505 (28.9)	121 (24.5)	48 (23.7)	38 (20.3)	
Sepsis	89 (3.4)	109 (6.2)	49 (9.9)	12 (5.9)	13 (7.0)	
Septic shock	14 (0.5)	25 (1.4)	16 (3.2)	5 (2.5)	7 (3.7)	
ASA class ≥ 4	76 (2.9)	96 (5.5)	44 (8.8)	32 (15.7)	37 (19.6)	<0.000
Abnormal liver function tests	517 (19.7)	455 (25.9)	175 (35.1)	69 (33.8)	58 (30.7)	<0.000
Resident participation	5,551 (57.3)	3,807 (58.6)	1,683 (61.7)	761 (58.7)	918 (62.0)	<0.000

Brooks et al, J Trauma Ac Care Surg 2013

TABLE 3. Operative Characteristics and Postoperative Outcomes for Patients Undergoing Emergency Cholecystectomy for Acute Cholecystitis

	Preoperative Length of Stay Before Cholecystectomy					
Outcome Variable	0 d (n = 2,620)	1 d (n = 1,757)	2 d (n = 498)	3 d (n = 204)	>4 d (n = 189)	
30-day mortality	20 (0.8%)	15 (0.9%)	9 (1.8%)	4 (2.0%)	10 (5.3%)	
AOR (95% CI)*	Ref	0.57 (0.27 to 1.22)	0.65 (0.27 to 1.66)	0.50 (0.13 to 1.92)	1.19 (0.45 to 3.13	
30-day morbidity	157 (6.0%)	133 (7.6%)	63 (12.7%)	31 (15.2%)	36 (19.1%)	
AOR (95% CI)*	Ref	0.90 (0.69 to 1.18)	1.25 (0.87 to 1.77)	1.37 (0.84 to 2.23)	1.45 (0.90 to 2.34	
Open cholecystectomy	427 (16.3%)	375 (21.3%)	144 (28.9%)	63 (30.9%)	70 (37.0%)	
AOR (95% CI)*	Ref	1.07 (0.90 to 1.27)	1.33 (1.03 to 1.71)	1.40 (0.97 to 2.01)	1.69 (1.17 to 2.4	
Operative time, mean (SD), min	82 (41)	87 (42)	89 (43)	91 (44)	98 (48)	
Beta coefficient (95% CI)*	Ref	2.97 (0.46 to 5.48)	3.77 (=0.23 to 7.77)	7.95 (1.99 to 13.9)	13.6 (7.4 to 19.9)	
Postoperative LOS, median (IQR), d	1 (1 to 3)	2 (1 to 3)	2 (1 to 4)	3 (1 to 5)	4 (2 to 7)	
Beta coefficient (95% CI)*†	Ref	-0.02 (-0.06 to 0.01)	0.03 (-0.02 to 0.09)	0.10 (0.02 to 0.18)	0.18 (0.10 to 0.20	
Total LOS, median (IQR), d	1 (1 to 3)	3 (2 to 4)	4 (3 to 6)	6 (4 to 8)	9 (7 to 12)	
Beta coefficient (95% CI)*†	Ref	0.31 (0.28 to 0.34)	0.56 (0.51 to 0.60)	0.75 (0.68 to 0.82)	1.00 (0.93 to 1.0)	

Brooks et al, J Trauma Ac Care Surg 2013

TABLE 4. Operative Characteristics and Postoperative Outcomes for High-Risk Patients Undergoing Cholecystectomy for Acute Cholecystitis

	7				
Outcome Variable	0 d (n = 637)	1 d (n = 549)	2 d (n = 208)	3 d (n = 107)	>4 d (n = 120)
30-day mortality	16 (2.5%)	15 (2.7%)	9 (4.3%)	4 (3.7%)	9 (7.5%)
AOR (95% CI)*	Ref	0.68 (0.31 to 1.51)	0.75 (0.29 to 1.98)	0.56 (0.14 to 2.19)	1.03 (0.37 to 2.87)
30-day morbidity	97 (15.2%)	86 (15.7%)	51 (24.5%)	25 (23.4%)	32 (26.7%)
AOR (95% CI)*	Ref	0.82 (0.58 to 1.16)	1.32 (0.86 to 2.02)	1.18 (0.66 to 2.10)	1.29 (0.76 to 2.21)
Open cholecystectomy	222 (34.9%)	189 (34.4%)	84 (40.4%)	44 (41.1%)	56 (46.7%)
AOR (95% CI)*	Ref	0.81 (0.63 to 1.06)	0.98 (0.69 to 1.40)	1.08 (0.68 to 1.72)	1.25 (0.80 to 1.94)
Operative time, mean (SD), min	87 (45)	89 (40)	89 (41)	89 (46)	95 (46)
Beta coefficient (95% CI)*	Ref	0.59 (-4.27 to 5.45)	-1.04 (-7.72 to 5.63)	2.15 (-6.66 to 11.0)	4.38 (-4.07 to 12.8
Postoperative LOS, median (IQR), d	3 (2 to 6)	3 (2 to 6)	4 (2 to 7)	4 (2 to 7)	5 (2.5 to 10.5)
Beta coefficient (95% CI)*†	Ref	-0.03 (-0.11 to 0.04)	0.03 (=0.07 to 0.12)	0.09 (-0.04 to 0.22)	0.13 (0.01 to 0.25)
Total LOS, median (IQR), d	3 (2 to 6)	4 (3 to 7)	6 (4 to 9)	7 (5 to 10)	10 (7 to 16)
Beta coefficient (95% CI)*†	Ref	0.21 (0.15 to 0.27)	0.41 (0.33 to 0.50)	0.59 (0.48 to 0.70)	0.82 (0.71 to 0.92)

Brooks et al, J Trauma Ac Care Surg 2013

J Gastrointest Surg (2015) 19:2003–2010 DOI 10.1007/s11605-015-2909-x

ORIGINAL ARTICLE

Acute Cholecystitis—Optimal Timing for Early Cholecystectomy: a French Nationwide Study

Maxime Polo¹ · Antoine Duclos^{2,3,4} · Stéphanie Polazzi² · Cécile Payet² · Jean Christophe Lifante^{1,2,3} · Eddy Cotte^{1,2,3} · Xavier Barth⁵ · Olivier Glehen^{1,2,3} · Guillaume Passot^{1,2,3}

- French National Database
- 42,452 patients 507 hospitals
- 3 year study

Early LC 1-3 days from admission associated with:

- Lower morbidity
- Lower mortality
- Lower readmission
- Lower post op sepsis

Mortality:

Day 0 = 1.4%

Day 1-3 = 0.8-1%

Day 4 = 1.2%

Day 5 = 1.9%

p<0.001

Early LC 1-3 days from admission associated with:

- Lower morbidity
- Lower mortality
- Lower readmission
- Lower post op sepsis

	Cholecystectomy timing (days)					p value	
	0	1	2	3	4	≥5	
Death (%)	1.4	0.9	0.8	1	1.2	1.9	< 0.001
Intensive care (%)	5.6	3	3.3	3	3.4	4.5	< 0.001
Reoperation (%)	1.2	0.6	0.5	0.5	1.1	1	< 0.001
Postoperative sepsis (%)	5.2	3.8	4.1	4	5.7	6.5	< 0.001

No need to wait: An analysis of the timing of cholecystectomy during admission for acute cholecystitis using the American College of Surgeons National Surgical Quality Improvement Program database

> Kelli R. Brooks, MD, John E. Scarborough, MD, Steven N. Vaslef, MD, PhD, and Mark L. Shapiro, MD, Durham, North Carolina

<u>Database study - No information on:</u>

- ? When did symptoms started
- ? How Wasuther diagrifosisth of Acc, don't delay surgery unless there is a REAL
- ? Reasom for tole from admission to Sx
- ? Patients in which non-op was chosen

J Gastrointest Surg (2015) 19:348-357 DOI 10.1007/sl1605-015-2747-x

ORIGINAL ARTICLE

Early Cholecystectomy Is Superior to Delayed Cholecystectomy for Acute Cholecystitis: a Meta-analysis

Amy M. Cao · Guy D. Eslick · Michael R. Cox

- Metanalysis of prospective RCT
- 14 studies included
- 1608 patients
 - 795 for early group (sx during first admission)
 - 813 for delayed group (sx during second admission conservative rx)

	Early	Delayed	P value
Morbidity (number of patients)	15% (96/625)	30% (192/643)	
Relative risk for having a complication	0.66 (95%CI 0.42-1.03)		p=0.07
Morbidity (number of events)	158/630 pts	263/646 pts	p=0.03
BDI	0.15 %	0.44%	p=0.34
Conversion to open	13.4%	15.4%	p=0.28
Wound infection	4.2%	6.2%	p=0.02
Cost	US\$ 10,096	US\$ 13,558	p=0.63

J Gastrointest Surg (2015) 19:348-357 DOI 10.1007/sl1605-015-2747-x

ORIGINAL ARTICLE

Early Cholecystectomy Is Superior to Delayed Cholecystectomy for Acute Cholecystitis: a Meta-analysis

Amy M. Cao · Guy D. Eslick · Michael R. Cox

Early LC associated with:

- Reduced total incidence of complications
- Reduced wound infection rate
- No increased risk of BDI or conversion rate
- Decreased cost and hospital stay

Timing for Sx in Ac Cholecystitis Cholecystostomy tube

Convenient for the surgeon but:

- The patient is the one that has to wear it for weeks
- Local tube issues are not to be ignored
- Timing of surgery not well defined
- Not everyone gets to surgery
- The subsequent surgery is NOT easy
 - Other issues may develop while you wait

Timing for Sx in Ac Cholecystitis: Cholecystostomy tube

Cholecystostomy for Ac Cholecystitis

JSLS. 2015 Jan-Mar; 19(1): e2014.00200. PMCID: PMC4376213

doi: 10.4293/JSLS.2014.00200

Tube Cholecystostomy Before Cholecystectomy for the Treatment of Acute Cholecystitis

Kei Suzuki, MD, Margaret Bower, MD, Sebastiano Cassaro, MD, Rajesh I. Patel, MD, Martin S. Karpeh, MD, and I. Michael Leitman, MD

Author	No. Pts PCT ^a	No. of Pts Interval Chole(%)	Planned LC	Conversion (% ^b)	Planned Open C	Mortality (% ^b)	Morbidity (% ^b)
Berber et al, ⁷ 2000	15	13 (87)	11	1 (9)	2	0 (0)	2 (15)
Spira et al, 16 2002	55	31 (56)	28	4 (14)	3	0 (0)	0 (0)
Leveau et al, 13 2008	35	3 (9)	3	NR ^a	NR	NR	NR
Paran et al, 17 2006	49	28 (57)	25	2 (8)	3	0	4 (16)
Ha et al, ⁹ 2008	65	24 (37)	24	NR	NR	8 (12.3)	NR
Cherng et al, ¹⁹ 2012	185	105 (57)	97	7 (7)	8	8 (4.3)	21 (11.4)
McKay et al, ²⁰ 2012	68	8 (12)	8	3 (38)	0	0	NR
Morse et al, ²¹ 2010	50	11 (22)	7	3 (43)	4	25 (50)	2 (4)
Nikfarjam et al, ²² 2013	32	9 (28)	9	NR	NR	3 (9)	6 (19)
Chang et al, 10 2014	60	2 (3)	2	0	0	0	0
Cull et al, 18 2014	NR	64	64	10 (16)	0	2 (3)	18 (28)
Present study	82	25 (30)	25	8 (32)	0	0	4 (16)

Cholecystostomy for Ac Cholecystitis

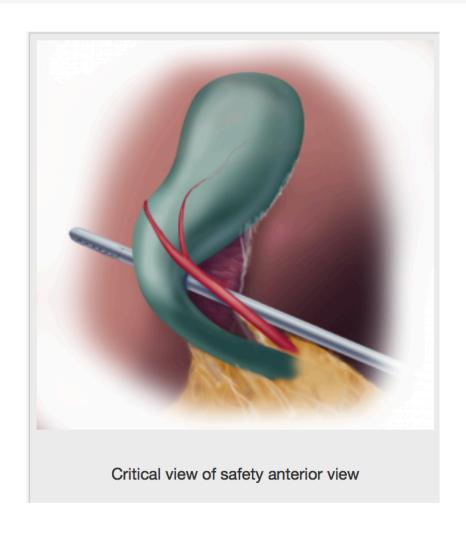
JSLS. 2015 Jan-Mar; 19(1): e2014.00200.

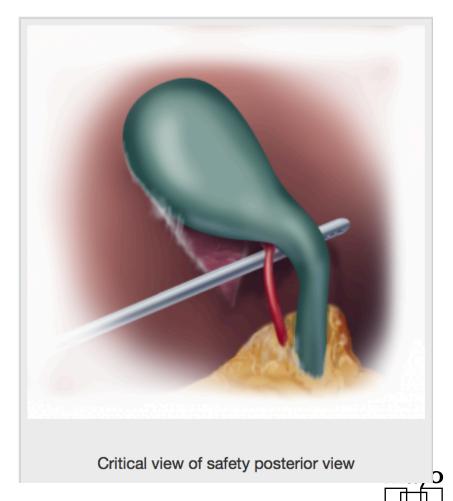
doi: 10.4293/JSLS.2014.00200

Tube Cholecystostomy Before Cholecystectomy for the Treatment of Acute Cholecystitis

Kei Suzuki, MD, Margaret Bower, MD, Sebastiano Cassaro, MD, Rajesh I. Patel, MD, Martin S. Karpeh, MD, and I. Michael Leitman, MD

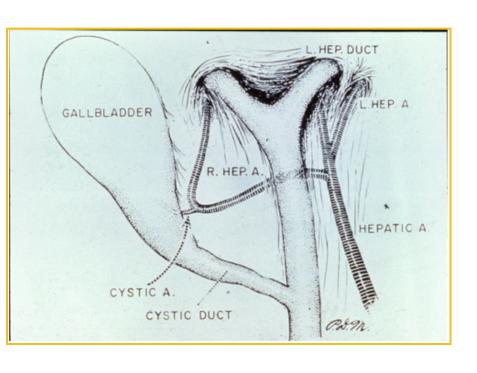
Conclusions:

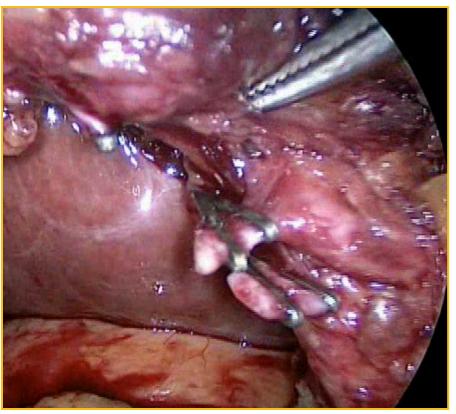

- In high-risk patients receiving cholecystostomy tubes only about one third will undergo surgical cholecystectomy.
- Laparoscopic cholecystectomy performed in this circumstance has a higher rate of conversion to open surgery and higher hepatobiliary morbidity rate.



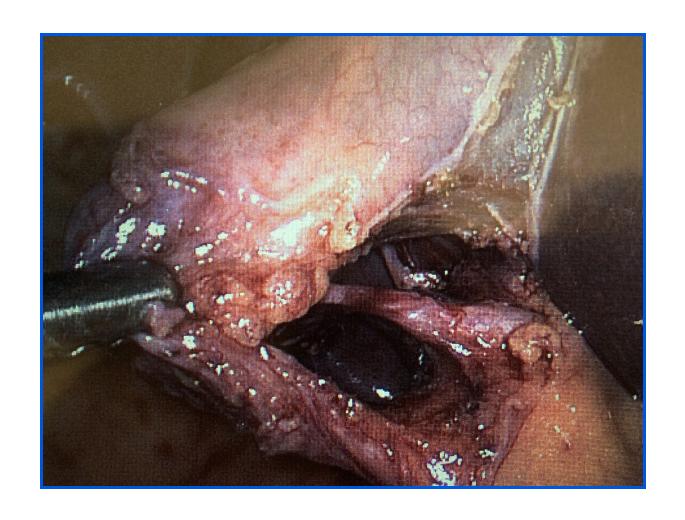
PMCID: PMC4376213

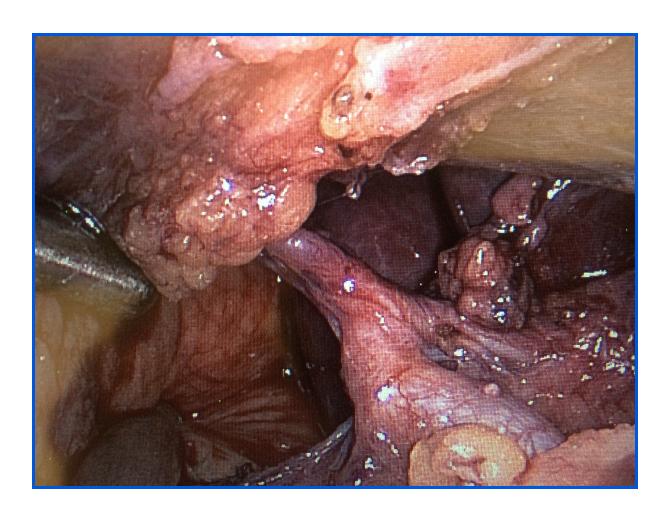
The SAGES Safe Cholecystectomy Program


Strategies for Minimizing Bile Duct Injuries: Adopting a Universal Culture of Safety in Cholecystectomy



www.sages.org


BDI Preventing vascular injury



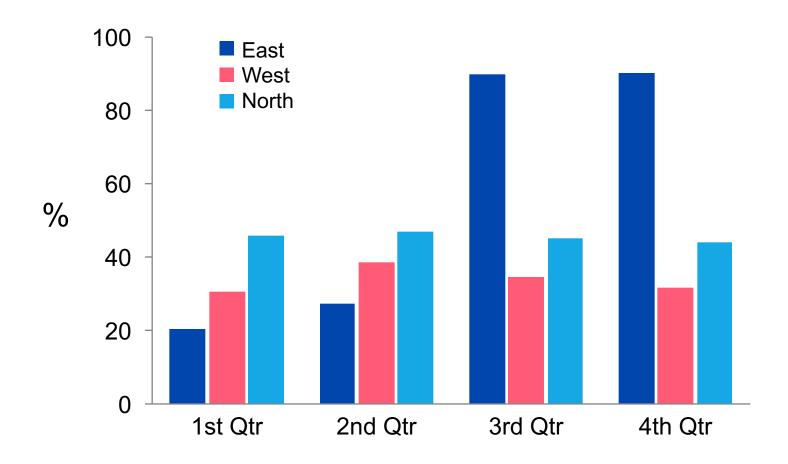
BDI Preventing vascular injury

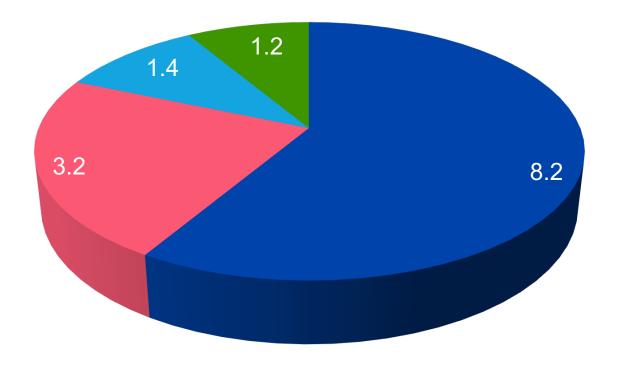
BDI Preventing vascular injury

To tube or not to tube

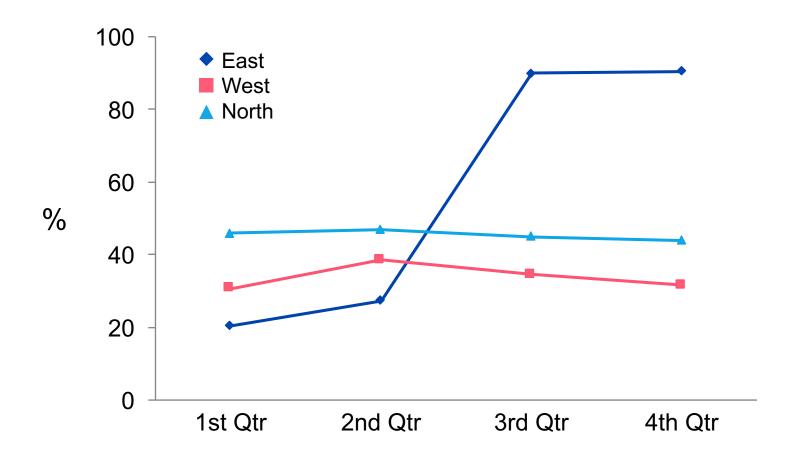
Take away lessons

- Do not do it out of convenience
- ➤ Understand the consecuences to the patient's quality of life
- ➤ Do not assume a subsequent surgery will be easier
- > If you are planning to do it, find a real reason
 - ➤ Know though, it could be a good exit strategy in AC during surgery to avoid BDI





Title for Chart Subtitle for Chart

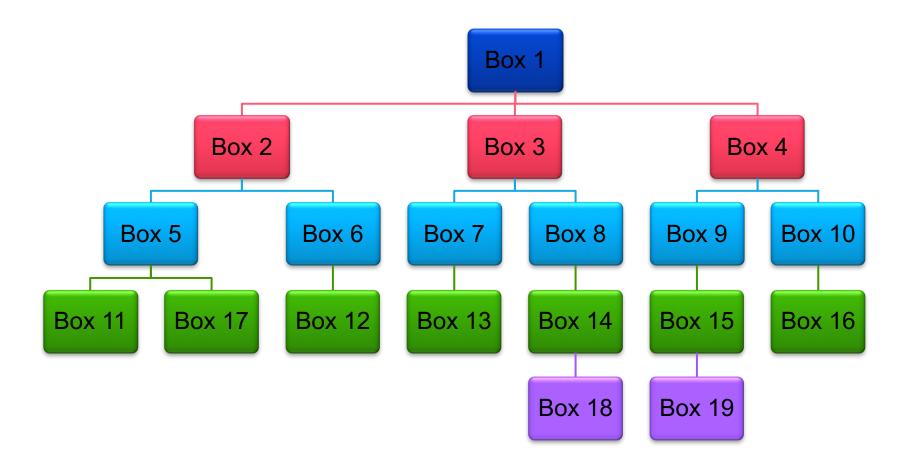


Title for Chart Subtitle for Chart

Title for Chart Subtitle for Chart

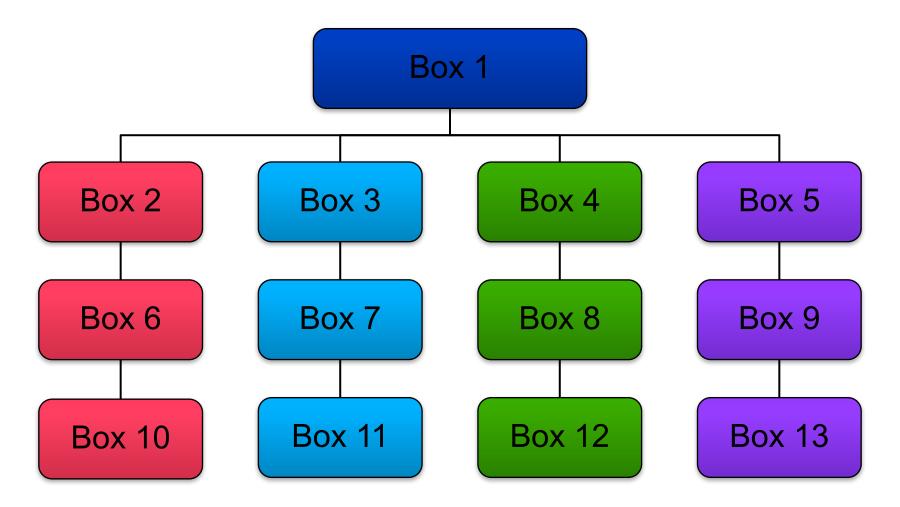
Microsoft Table Subtitle for Table

Column 1	Column 2	Column 3	Column 4	Column 5
Row 1	Red	12.3	47%	P<0.001
Row 2	Yellow	459.2	26%	P=0.05
Row 3	Green	56.7	98%	NS
Row 4	Blue	1.0	2%	P>0.01
Row 5	Pink	56.9	14%	P<0.0001
Row 6	Violet	25.4	35%	P=0.01
Row 7	Orange	1,256.2	5%	P<0.001



Tabbed Table Subtitle for Table

Column 1	Column 2	Column 3	Column 4	Column 5
Row 1	Red	12.3	47%	P<0.001
Row 2	Yellow	459.2	26%	P=0.05
Row 3	Green	56.7	98%	NS
Row 4	Blue	1.0	2%	P>0.01
Row 5	Pink	56.9	14%	P<0.0001
Row 6	Violet	25.4	35%	P=0.01
Row 7	Orange	1,256.2	5%	P<0.001


Organization Chart SmartArt

Organization Chart

Text boxes and Connectors

Mayo Clinic Locations

Questions & Discussion