The Newly Discovered Pulmonary Nodule What to do?

Steven M. Keller, M.D.

Director Thoracic Surgery, Weiler Hospital
Professor of Cardiothoracic Surgery
Albert Einstein College of Medicine
Montefiore Medical Center, New York

Solitary Pulmonary Nodule Definition Nomenclature Committee of the Fleischner Society

- Round opacity, at least moderately well marginated and no greater than 3 cm in maximum diameter
- Some authors use the modifier "small" if the maximum diameter of the opacity is less than 1 cm
- A micronodule is less than 3 mm in diameter

Your Father's (Grandfather's) Solitary Pulmonary Nodule

The Millenial's Solitary Pulmonary Nodule

- SubSolid
- Ground-glass nodule (synonym, nonsolid nodule) manifests as hazy increased attenuation in the lung that does not obliterate the bronchial and vascular margins
- Partially solid nodule (synonym, semisolid nodule) consists of both ground-glass and solid soft-tissue attenuation components

The Millenial's Solitary Pulmonary Nodule

- Solid nodule
- Spiculated homogenous soft-tissue attenuation

Wang. J Thorac Dis 2014:6;872-7

Differential Diagnosis of Solid Pulmonary Nodules

- Neoplastic
- Primary lung - non small cell, small cell, carcinoid, lymphoma
- Solitary metastases
- Benign - hamartoma, AV malformations
- Infectious - granuloma, round pneumonia, abscess, septic emboli
- Non-infectious - subpleural lymph node, rheumatoid nodule, Wegener, focal scarring
- Congenital - sequestration, bronchogenic cyst

Differential Diagnosis of Subsolid Pulmonary Nodules

- Neoplastic
- Primary lung - adenocarcinoma,
- Solitary metastases - melanoma, RCC, pancreas, breast, GI, lymphoproliferative
- Benign - organizing pneumonia, focal interstitial fibrosis, endometriosis

Bronchoalveolar Carcinoma R.I.P.

- Atypical Adenomatous Hyperplasia (AAH) localized, small (usually 0.5 cm or less) proliferation of mildly to moderately atypical type II pneumocytes and/or Clara cells lining alveolar walls and sometimes, respiratory bronchioles

Atypical Adenomatous Hyperplasia (AAH)

Bronchoalveolar Carcinoma R.I.P.

- Adenocarcinoma in situ - localized small (3 cm) adenocarcinoma with growth restricted to neoplastic cells along preexisting alveolar structures (lepidic growth), lacking stromal, vascular, or pleural invasion. Papillary or micropapillary patterns and intra-alveolar tumor cells are absent

Adenocarcinoma in situ

Bronchoalveolar Carcinoma R.I.P.

- Minimally invasive adenocarcinoma - small, solitary adenocarcinoma (3 cm), with a predominantly lepidic pattern and invasion of 5 mm or less in greatest dimension in any one focus. It is usually nonmucinous. Minimally invasive adenocarcinoma is, by definition, solitary and discrete.

Minimally Invasive Adenocarcinoma

Atypical Adenomatous Hyperplasia

Typically has pure groundglass attenuation and
measures less than 1 cm .

Adenocarcinoma In Situ

Typically has pure groundglass attenuation and measures less than 3 cm .

Thuong. Redocrephles 2014;8\$1656-70

Minimally Invasive Adenocarcinoma

Ground-glass and solid components

Correlation of Radiologic and Pathologic Findings

IASLC, ATS, ERS Classification	CT Features
Atypical Adenomatous Hyperplasia (AAH)	GGN - Ground-Glass Nodule
Adenocarcinoma in situ	GGN with a possible solid component
Minimally invasive adenocarcinoma	GGN, partially solid
Lepidic-predominant adenocarcinoma	Partly solid nodule, solid nodule
Invasive adenocarcinoma	Partly solid with a solid component, solid nodule

Fleischner Society Recommendations for Management of Subsolid Pulmonary Nodules

- Ground Glass Nodule (GGN) < 5 mm
- Not CT follow-up, but obtain 1 mm cuts to confirm that the nodule is purely ground glass
- Ground Glass Nodule > 5mm
- Follow-up CT 3 months, if unchanged then annually x3 years
- Partially Solid Nodule
- Follow-up at 3 months, if persistent and solid component < 5mm, then annual CT x 3yrs
- If solid component > 5 mm , then biopsy or resection

Algorithm for Evaluation of a Subsolid Nodule

Invasive Adenocarcinoma

Present in at least 1 focus, measuring more than 5 mm in
greatest dimension

Invasive Adenocarcinoma

Lepidic-predominant adenocarcinoma (LPA) in its nonmucinous form. Necrosis may be present, and the focus of invasion of lymphatics and blood vessels is greater than 5 mm

Fleischner Society Recommendations for Follow-up of Solid Pulmonary Nodule

	Risk Factor					
Size	Low	High				
$\leq 4 \mathrm{~mm}$	No follow-up	Follow-up 12 months				
$5-6 \mathrm{~mm}$	Follow-up 12 months	Follow-up 6-12 months and 18-24 months				
$7-8 \mathrm{~mm}$	Follow-up 6-12 months and 18-24 months	Follow-up at 3-6 months, $9-12 ~ m o n t h s, ~ a n d ~ 24 ~$				
months			$	$	$>8 \mathrm{~mm}$	Follow-up at 3, 9 and 24 months. Consider contrast enhanced CT, PET/CT or biopsy
:---	:---					
Follow-up at 3, 9 and 24 months. Consider contrast enhanced CT, PET/CT or biopsy						

Nesth. Redtelagy 2013; 288:804-17 ${ }^{\text {* Little or no smoking history an other risk factors }}$ + History of smoking or other exposure or risk facior

+ History of smoking or other exposure or risk factors

Algorithm for Evaluation of a Solid Nodule

CT Characteristics of Malignancy

Carcinoid - images obtained before and after i.v contrast show the nodule has enhanced, with an increase in attenuation values of 109 HU.

CT Characteristics of Malignancy

Lung Cancer - a cystic airspace $\left(^{*}\right)$ in the right lower lobe. Follow-up CT image obtained 6 months later shows a new soft-tissue component (arrows) along the wall of the cystic airspace.

CT Characteristics of Malignancy

Adenocarcinoma - Subsolid lesion that increased in size, which indicates an increased risk for malignancy. Follow-up 3 years later shows the increase in size to 1.8 cm .

CT Characteristics of a Benign Process

Hamartoma - Contrastenhanced CT shows a wellcircumscribed left lower lobe nodule with low attenuation (-46 HU), a finding consistent with fat

CT Characteristics of a Benign Process

Granuloma - Benign pattern of calcification in a patient from the Ohio River valley. CT image shows a central, or "bull's-eye," area of calcification. The nodule is a result of Histoplasma capsulatum infection.

CT Characteristics of a Benion Process

Pulmonary infarction - a thick-walled cavitary lesion in the left lower lobe and a small left pleural effusion. Contrast-enhanced CT image shows a pulmonary embolism in the left interlobar pulmonary artery

CT Characteristics of a Benign Process

Fungal pneumonia - contrastenhanced CT image shows a right-lower-lobe lesion and air-filled bronchi (the air bronchogram sign), findings consistent with pneumonia.

PET/CT - False Negative

Adenocarcinoma Slowly growing tumors will not be PET avid.

PET CT - False Positive

Diagnostic Options

- PET/CT
- Frequently below the detection threshold
- Non avid nodules may represent slowly growing cancers
- Percutaneous biopsy
- Often too small, too central
- Specimen may not be sufficient to differentiate between invasive and non invasive lesions

Diagnostic Options

- Navigational bronchoscopy
- Resection
- Minimally invasive
- Open
- Frozen section will likely be unable to differentiate between invasive and minimally invasive tumors.

Treatment of (very) Early NonSmall cell Lung Cancer

- Wedge/segmental resection are probably sufficient for the premalignant lesions (adenomatous hyperplasia, carcinoma in situ, minimally invasive adenocarcinoma)
- Lobectomy remains standard therapy for invasive cancers
- Traditionally, less than lobectomy has been associated with increased local recurrence.
- A randomized trial is currently accruing

CALGB 140503

```
A Phase III Randomized Trial of Lobectomy versus Sublobar Resection for Small (S 2 cm) Peripheral Non-Small Cell Lung Cancer
Patient Eligibility
Pre-registration criteria
Peripheral lung nodule \(\leq 2 \mathrm{~cm}\) on CT and presumed to be lung cancer (see Sec 4.1.1) Tumor location suitable for either lobar or sublobar resection
ECOG PS: 0-2
No prior malignancy within 5 years (see Section 4.1.4)
No prior chemotherapy or radiation therapy for this malignancy
No evidence of locally advanced or metastatic disease
Age \(\geq 18\) years
Intra-operative randomization criteria
Histologic confirmation of NSCLC
Confirmation of \(\mathrm{N}_{0}\) status (see Sec. 4.2.2)
```


CALGB 140503

* Randomization is done intra-operatively after determining patient eligibility. CALGB CRAs must be able to access the web-based CALGB registration system during surgery to obtain treatment assignment and inform the surgeon of the assignment at the site. Patients who are not randomized intraoperatively will not be considered "on-study" and should follow the instructions in Section 6.1.

ONCOLOGY

> Long-term Results of RTOG 0236: A Phase II Trial of SBRT in the Treatment of Patients with Medically Inoperable Stage I Non-small Cell Lung Cancer
R. Timmerman ${ }^{1}$, C.Hu ${ }^{2}$, J. Michalski ${ }^{3}$, W. Straube ${ }^{3}$, J. Galvin ${ }^{4}$, D. Johnstone ${ }^{5}$, J. Bradley ${ }^{3}$, R. Barriger ${ }^{6}$, A. Bezjak ${ }^{7}$, G. Videtic ${ }^{8}$, L. Nedzi ${ }^{1}$, M. Werner-Wasik ${ }^{4}$, Y. Chen ${ }^{9}$, R. Komaki ${ }^{10}$, H. Choy ${ }^{1}$ 'Univ. Of Texas Southwestern Medical Ctr, Dallas, T ' 2 American College of Radiology, Philadelphia, PA; ${ }^{3}$ Washington Univ., St. Louis, MO; ${ }^{4}$ Th. Jefferson Hosp., Philadelphia,
PA; ${ }^{5}$ Medical College of Wisc., Milwaukee, WT; ${ }^{6} /$ ndiana Univ., Indpis., IN; ${ }^{7}$ Princess Margaret Hosp.,. Toronto, ON; ${ }^{8}$ Cleveland Clinic, Cleveland, $\mathrm{OH} ;{ }^{9}$ niv. of Rochester Medical

Ctr., Rochester, NY; ${ }^{10}$ MD Anderson Cancer Ctr., Houston, TX
ASTRO Annual Meeting
September 15, 2014

Eligibility

- Non-small cell lung cancer - biopsy proven
- T1, T2 ($\leq 5 \mathrm{~cm}$) and T3 (chest wall only, $\leq 5 \mathrm{~cm}$), NO, MO
- Medical problems preclude surgery (e.g. emphysema, heart disease, diabetes)
- No other planned therapy

NRG
 ONCOLOGY

Endpoints

- Primary endpoint 2-year primary tumor (in-field + marginal) recurrence
- 2% of 55 evaluable patients (reported ASTRO 2009)
- Secondary endpoints disease free survival, overall survival, patterns of failure, and toxicity
- 3 yr overall survival 56\% (reported ASTRO 2009)
- 3 yr local-regional (primary + intralobar + regional) failure 13\% (reported JAMA 2010)
- Disseminated failure 20\% (reported ASTRO 2009)
- Grade ≥ 3 toxicity considered significant
- 15 patients experienced such toxicity with no grade 5 toxicity (reported ASTRO 2009)
NRG
oncotocoy

Primary (In-field + Marginal) Tumor Recurrence

Local (primary + intralobar) Recurrence

Years Since Start of SBRT

Regional and Disseminated Recurrence

- 7 patients have a reported regional failure, out to 5+ years post SBRT
- Only 2 patients in previous report
- 5 year local-regional recurrence 38\%
- 15 patients (31%) have experienced disseminated failure
- 11 patient in previous report
oncologym

Disease Free Survival

Overall Survival

Conclusions

- Primary tumor recurrence (treated area) remained very low at 5 years (7\%) owing to the potent SBRT regimen
- Local-regional failure increased significantly, 38% at 5 years compared to 13% at 3 years, due to late failures (up to 6 years post SBRT) in mostly the involved lobe but also the hilum, and mediastinum (all untreated)
- Severe toxicity remained relatively unchanged with longer follow-up
- Disease free and overall survival in this medically inoperable population at 5 years was 26% and 40%, respectively

The Solitary Pulmonary Nodule in a Patient with Extrapulmonary Cancer

Type of Extrapulmonary Primary Malignancy	No. of Patients $(n=161)$	No. of Patients with Metastases ($n=50$)	No. of Patients with Primary Lung Cancers $(n=81)$	No. of Patients with Benign Lesions $(n=30)$
Head and neck squamous cell cancers	33	3 (9)	25 (76)	5 (15)
Lymphoma or leukemia	14	0 (0)	8 (57)	6 (43)
Carcinomas of the urinary bladder, breast, uterine cervix, biliary tree, esophagus, ovary, prostate, or stomach	45	8 (18)	26 (58)	11 (24)
Carcinomas of the salivary glands, adrenal gland, colon, parotid gland, kidney, thyroid gland, thymus, or uterus	31	16 (52)	13 (42)	2 (6)
Melanoma, sarcoma, or testicular carcinoma -Numbers in parentheses are percentages.	38	23 (60)	$9(24)$	6 (16)

The National Lung Screening Trial

- Conducted by NCI Division of Cancer Prevention and American College of Radiology (ACRIN)
- Randomized between annual chest x-ray or low dose CT x 3 years
- Two phases
- Screening Feasibility Phase (2000)
- Actual trial enrollment (2002-2004)
- No follow-up guidelines for abnormal findings

NLST: Eligibility and Exclusion Criteria

- Eligibility
- Age 55-74
- > 30 pack years
- Currently smoking
- Former smokers: stopped within previous 15 years
- Exclusion
- History of lung cancer
- Any cancer within five years*
- Previous lung surgery
- Need for home oxygen
- Unexplained weight loss > 15 lbs in prior 12 months
- Hemoptysis
- Chest CT within prior 18 months
*Other than: nonmelanoma skin cancer or carcinoma in situ (except transitional cell carcinoma in situ or bladder carcinoma in situ)

NSLT: CT Interpretation Categories

Negative or minor
abnormality: not suspicious
for lung cancer

No findings or minor findings not suspicious for lung cancer, such as morphologically benign nodules or noncalcified nodules < 4 mm

Positive: suspicious for lung Noncalcified nodule > 4mm, cancer lung consolidation, nodule enlargement, nodules with suspicious changes in attenuation

The National Lung Screening Trial

- $\mathrm{N}=53,456$ (enrolled in two years!!)
- Last screening round 2007
- 90\% power to detect a 21\% reduction in lung cancer mortality
- Follow-up data collected until 12/09
- X-rays read locally by NLST trained/approved radiologists

The National Lung Screening Trial

- Primary endpoint - lung cancer mortality
- Secondary endpoints
- incidence and stage across arms and screening centers
- sensitivity, specificity, positive and negative predictive values

NLST: Results

- 20.3% reduction in lung cancer mortality in patients screened with CT relative to those screened with chest X-ray
- 7\% decrease in all cause mortality in patients screened with CT relative to those screened with chest X-ray
- 24.2% of CT scans were classified as positive
- 96.4% false positive in the CT arm

The National Lung Screening Trial

NLST. NEJM 2011;365:395-409

The National Lung Screening Trial

What \% of the U.S. population and incident lung cancers would be covered by applying the NLST eligibility criteria?

- Estimated total number of lung cancers from SEER data and the U.S. census
- Estimated the proportion of the population in smoking categories with the 2010 National Health Interview Survey
- Calculated Relative Risk from statistical models

Smoking category A. Current or quit within 15 years, $30+$ pack years*		55-74	50-74	55-79	50-79
	\% of cancers	26.7	29.1	32.9	35.3
	\% of population over 40	6.2 579	8.3 470	6.8 655	8.9 535
B. $30+$ pack years (any quit status)	\% of cancers	32.5	35.0	43.8	46.3
	\% of population over 40	8.3	10.7	9.7	12.1
	Incidence rate (per $10^{5} \mathrm{PY}$)	537	449	616	523
C. Current or quit within 15 years (any pack years)	\% of cancers	36.6	40.9	44.5	48.8
	\% of population over 40	11.4	17.0	12.3	17.9
	Incidence rate (per $10^{5} \mathrm{PY}$)	436	326	492	371
D. Ever smoker	\% of cancers	47.9	52.6	63.5	68.2
	\% of population over 40	19.4	27.1	22.3	30.0
	Incidence rate (per $10^{5} \mathrm{PY}$)	332	262	384	307

- Screening the NLST group will decrease all NSCLC mortality by 5% (20% of 26.7% of all lung cancers)
- Except for increasing the age range to 55-79, all other groups would require screening more patients to identify the same number of cancers

Defining Screen Positivity - Perhaps Three Dimensions are Better than One

- NLST
- > 4mm greatest diameter - positive
- 24% of all CTs were positive
- NELSON trial (Dutch Belgian randomised lung cancer screening trial) NEderlands Leuvens Longkanker Screenings Onderzoek
- > 500 mm ${ }^{3}$ - positive
$-50-500 \mathrm{~mm}^{3}$ - indeterminate which were followed with a repeat CT in 3 months. Volume increase of $>25 \%$ was utilized to characterize as positive or negative
- 2.6% of all CTs were positive, sensitivity 94.6%, negative predictive value 99.9\%

Recommendations of The American Association for Thoracic Surgery (AATS) Task Force for Lung Cancer Screening and Surveillance

Recommendations of The American Association for Thoracic Surgery (AATS) Task Force for Lung Cancer Screening and Surveillance

Recommendations of The American Association for Thoracic Surgery (AATS) Task Force for Lung Cancer Screening and Surveillance

UK Lung Screen (UKLS) nodule management: modeling of a single screen randomised controlled trial of low-dose CT screening for lung cancer

	Solid	Non-solid or part solid
Category 1	Nodules containing fat or with a benign pattern of calcification are considered benign. Nodules $<15 \mathrm{~mm}^{3}$ or if pleural or juxta pleural $\leq 3 \mathrm{~mm}$	
Category 2	Intraparenchymal nodules with a volume of $15-49 \mathrm{~mm}^{3}$. Pleural or juxtapleural nodules with a maximal diameter of $3.1-4.9 \mathrm{~mm}$.	Nodules with a maximal non-solid component diameter $<5 \mathrm{~mm}$. Where there is a solid component, the component volume is $<15 \mathrm{~mm}^{3}$
Category 3	Intraparenchymal nodules with a volume of $50-500 \mathrm{~mm}^{3}$. Pleural or juxtapleural nodules with a maximal diameter of 5-9.9 mm.	Nodules with a maximal non-solid component diameter of $>5 \mathrm{~mm}$. Where there is a solid component, the component volume is $15-500 \mathrm{~mm}^{3}$
Category 4	Intraparenchymal nodules with a volume $>500 \mathrm{~mm}^{3}$. Pleural or juxtapleural nodules with a maximal diameter of $\geq 10 \mathrm{~mm}$.	Nodules with a solid component with a volume $>500 \mathrm{~mm}^{3}$

Factors that Increase the Risk of Lung Cancer

- Age
- Gender
- Cigarette smoking history and duration
- Second hand smoke in never-smokers
- Bronchitis, emphysema (FEV1 <70\%), pneumonia
- Asbestos exposure
- Family history of lung cancer
- Low socioeconomic status
- Low BMI

Factors that Increase the Risk of Lung Cancer

- Snip markers for COPD/Lung Cancer
- Young et al. Frontiers Genet 2012;3:1-7
- Serum proteonomics
- Pecot et al. Cancer Epidemiol Biomarkers Prev 2012;21:786-92
- Plasma DNA - aberrant methylation of tumor suppressor genes
- Ostrow et al. Clin Cancer Res 2010;16:3463-72
- Abnormal sputum cytology
- Giordano and Bagella. J Cell Physiol. 2013 May;228:945-51

Toenail Nicotine Level as a Novel Biomarker for Lung Cancer

- Health Professional Follow-up Study initiated 1986 - n=51,529
- Predominantly white males ages 40-75 years
- 1987 - 33,737 sent toenail clippings
- 210 cases with lung cancer and 630 matched controls for total 840 patients
- Toenail nicotine has a long half-life
- Toenails grow slowly 1cm/year

Toenail Nicotine Level as a Novel Biomarker for Lung Cancer

	Toenail Nicotine Quintile, ng/mg					
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	
No. of men	179	164	163	166	168	
Median toenail nicotine, ng/mg	0.04	0.07	0.10	0.20	1.28	
Age in years, mean (SD)	$62.8(8.8)$	$62.7(8.0)$	$63.8(7.5)$	$63.8(7.1)$	$60.7(8.0)$	
Physical activity, METs	19.2	21.0	18.8	19.6	15.0	
Body mass index, $\mathrm{kg} / \mathrm{m}^{2}$	25.0	25.0	25.2	25.5	24.7	
Pack-years of smoking, no.	11.2	12.7	15.8	19.3	37.3	
Smoking status, \%						
Never smoker	29.2	24.0	23.6	17.5	5.7	
Past smoker	21.6	21.3	21.5	23.0	12.6	
Current smoker	0.0	1.2	1.1	12.6	85.2	

Abbreviations: MET, metabolic equivalent task-hour; SD, standard deviation.

Toenail Nicotine Level as a Novel Biomarker for Lung Cancer

Variable	Univariate Analysis		Multivariate Analysis			
			Model $1^{\text {a }}$		Model $2^{\text {b }}$	
	RR	95\% CI	RR	95\% CI	RR	95\% CI
Pack-years of smoking						
0 (19 cases)	1.00				1.00	
1-9 (12 cases)	2.18	0.98, 4.84			1.92	0.83, 4.44
10-19 (9 cases)	1.46	0.62, 3.47			1.36	0.55, 3.34
20-29 (30 cases)	5.44	2.82, 10.51			4.66	2.35, 9.24
30-39 (35 cases)	10.39	5.28, 20.44			7.68	3.75, 15.73
≥ 40 (105 cases)	26.05	13.90, 48.81			15.80	8.06, 30.97
P for trend		<0.0001				0.0001
Nicotine quintile						
1 (26 cases)	1.00		1.00		1.00	
2 (21 cases)	1.02	0.52, 1.99	0.82	0.40, 1.69	0.83	0.38, 1.82
3 (26 cases)	1.43	0.74, 2.75	1.23	0.61, 2.47	1.09	0.51, 2.34
4 (40 cases)	2.10	1.12, 3.93	1.34	0.68, 2.67	1.30	0.62, 2.73
5 (97 cases)	10.50	5.61, 19.64	3.16	1.49, 6.73	3.57	1.73, 7.37
P for trend		<0.0001		0.0004		0.0001

Conclusions

- Growing nodules should be removed/treated
- Wedge resection/segmental resection sufficient for pre invasive cancers
- Screening an at risk population with low dose annual CT scans reduces lung cancer mortality by 20\%

