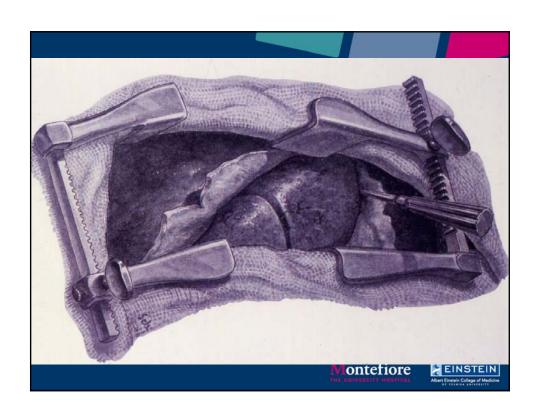


Principles of Treatment

- Adequate drainage
- Sterilization with antimicrobials
- Obliteration of the infected space



Modalities of Treatment

- Thoracotomy, decortication
- Thoracoscopy, decortication
- Chest tube drainage-+/- fibrinolytics
- Thoracentesis

Modalities of Treatment

- Which therapy is appropriate for empyema patients?
 - Does one size fit all?

Stages of Empyema Stage I - Exudative

- Uncomplicated Parapneumonic effusion
 - Non-purulent culture-negative effusion associated with pneumonia
- Fibrin deposition
- Lung is compliant, can reexpand with evacuation of fluid

Stage I Parapneumonic Effusion

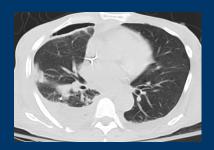
- Treatment options:
 - Spontaneous resolution with antibiotic therapy
 - Thoracentesis
 - Chest tube drainage

Stages of Empyema Stage II - Fibrinopurulent

- Heavy fibrin deposits over parietal and visceral pleura
 - Loculations/adhesion
- Pleural fluid
 - Characteristics:
 - Ph <7
 - Glucose < 50
 - LDH > 1000
- Lung less mobile but still expandable

Stages of Empyema Stage II - Fibrinopurulent

- Treatment options:
 - Chest tube with fibrinolytics
 - Thoracotomy Decortication
 - VATS Decortication


Stages of Empyema Stage III – Fibrotic (Chronic)

- In-growth of fibroblasts and formation of collagen fibers over both parietal and visceral surfaces
 - Inelastic pleural peel, trapping lung
- Frank pus

Stages of Empyema Stage III – Fibrotic (Chronic)

- Treatment options:
 - Chest tube with fibrinolytics
 - ThoracotomyDecortication
 - VATS Decortication

Imaging- CXR

- Pleural effusion +/underlying lung pathology
- Usually posterior and lateral extending to diaphragm on lateral view
- Decubitus views help delineate loculations

Montefiore

Imaging - CT Scan

- Differentiate between abscess, consolidation and empyema
- Determines loculations and stage of empyema
- Evaluate pleura
- Signs:
 - thickened and separated pleural surfaces
 - compression of parenchyma
 - pleural enhancement
- Assess possible intervention

Can Empyema be treated nonsurgically?

- Thoracentesis or chest tube drainage for stage I, uncomplicated parapneumonic effusion is uncontroversial
- Debate over whether chest tube drainage with fibrinolytic therapy can be a definitive treatment for stages II and III

Fibrinolytic Therapy

- First described in 1950's with streptokinase
 - Initial literature was retrospective case series
 - Few randomized controlled trials
 - Compared to placebo
 - Increased chest tube drainage
 - Reduced referral for surgery
 - Decrease in treatment length, mortality
- Small studies, not confirmed in larger ones

Davies et al, Thorax 1997; Chin et al, Chest 1997; Diacon et al, J Resp Crit Care Med 2004; Misthos et al EJCTS 2005

Fibrinolytic Therapy

- Streptokinase compared to VATS
 - 20 patients per arm
 - Loculated effusion or ph < 7.2</p>
 - VATS with shorter hospital stay (8.7 v 12.8) and higher success rate (91 v 44%)

Wait et al, Chest 1997

- 454 patients, randomized, double-blind
- Streptokinase BID for 3 days v placebo
- Primary endpoints:
 - Death
 - Surgery requirement
- Efficacy determined by reduction in pleural opacity on CXR
- No difference noted in any parameters

Maskell et al, NEJM 2005

Fibrinolytic Therapy – Is it enough?

- In vitro studies showed that free DNA cleavage reduces fluid viscosity which allows for pleural clearance by the fibrinolytic agents
- This is distinct from pediatric empyemas
 - Predominant organism s. pneumo
 - Clearance with streptokinase works
 - Adults have polymicrobial or nosocomial infections

Corcoran and Rahman, Chest 2014

- Prospective randomized, double blinded, multi-institutional trial
- 4 arms:
 - Double placebo (n=55)
 - tPA/placebo (n=52)
 - DNase/placebo (n=51)
 - tPA 10 mg/DNase 5 mg (n=52)
- BID administration for 3 days
 - Tube clamped for 1 hour

Rahman et al, NEJM 2011

Fibrinolytic Therapy – MIST-2

- Eligibility:
 - Clinical evidence infection
 - Fever
 - Elevated WBC, CRP
 - Purulent pleural fluid
 - Positive culture or Gram's stain
 - Ph< 7.2

Rahman et al, NEJM 2011

- Primary endpoint change in pleural opacity on chest x-ray from day 1 to day 7
- Secondary endpoints
 - Referral for surgery (by 3 mos. and 12 mos.)
 - If sx/signs present >48 hours after completion of treatment
 - Poor CXR response with improved sx not reason
 - Hospital LOS
 - Adverse events
- 97% followup at 12 months

Rahman et al. NEJM 2011

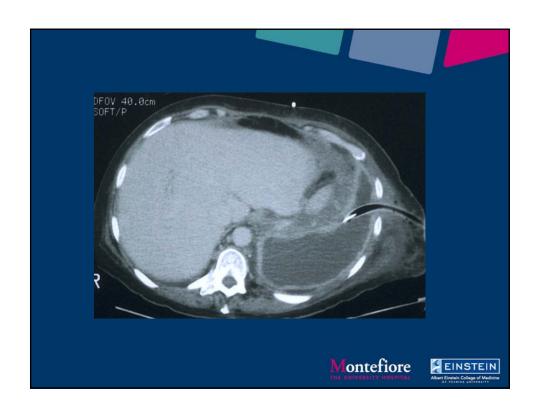
Fibrinolytic Therapy – MIST-2

- tPA/DNase group had increased change in opacity compared to placebo
 - tPA alone and DNase alone no diff. compared to placebo
- tPA/DNase group with decreased surgical referral at 3 months compared to placebo
 - tPA alone more referrals compared to placebo
 - DNase alone with non-significant reduction

Rahman et al, NEJM 2011

- tPA/DNase with shorter hospital stay (6.7 days shorter, but still 11.8 day mean)
- No change in mortality at both time points
- Inflammatory measures not significantly different

Rahman et al, NEJM 2011



Fibrinolytic therapy – MIST-2

- 91% pts with loculated effusion
 70% in MIST1
- Only used CXR for analysis, not CT
- Meta-analysis in Chest 2012 shows potential benefit in patients with loculated effusions

Surgical treatment of empyema

- British Thoracic Society:
 - Referral 5-8 days if initial therapy fails
- ACCP:
 - Surgery acceptable for advanced-stage empyema

Surgical treatment of empyema

- Retrospective series show surgery compared to simple drainage has:
 - Increased likelihood of success
 - Fewer deaths
- No randomized trials comparing VATS to open

Wozniak et al, Ann Thor Surg, 2009 Shin et al JTCVS 2013

Surgical treatment of empyema

- Stage 2 outcomes similar for VATS and thoracotomy approach
- Stage 3 outcomes
 - VATS equivalent in one study with Stage 2 and 3 patients
 - Stage 3 conversion rates up to 59%
 - Delay from onset of symptoms to OR
 - Fever
 - Pleural thickening on scan

Muhammad, Asian CV Thor Ann 2012 Angelillo et al Ann Thor Surg 1996

Conclusions

- Chest tube drainage with fibrinolytic therapy is a reasonable approach in selected patients with loculated pleural effusions
- VATS appropriate for stage II
- VATS reasonable initial approach for stage III with low threshold for conversion

